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Abstract. The Last interglacial (LIG) is a period with increased summer insolation at high northern latitudes, which results in

strong changes in the terrestrial and marine cryosphere. Understanding the mechanisms for this response via climate modelling

and comparing the models’ representation of climate reconstructions is one of the objectives set up by the Paleoclimate Mod-

elling Intercomparison Project for its contribution to the sixth phase of the Coupled Model Intercomparison Project. Here we

analyse the results from 12 climate models in terms of Arctic sea ice. The mean pre-industrial to LIG reduction in minimum5

sea ice area (SIA) reaches 59% (multi-model mean LIG area is 2.21 mill. km2, compared to 5.85 mill. km2 for the PI), and the

range of model results for LIG minimum sea ice area (from 0.02 to 5.65 mill. km2) is larger than for PI (from 4.10 to 8.30 mill.

km2). On the other hand there is little change for the maximum sea ice area (which is 12 mill. km2 for both the PI and the LIG,

with a standard deviation of 1.04 mill. km2 for PI and 1.21 mill. km2 for LIG). To evaluate the model results we synthesize

LIG sea ice data from marine cores collected in the Arctic Ocean, Nordic Seas and northern North Atlantic. South of 78◦N in10

the Atlantic and Nordic seas the LIG was seasonally ice-free. North of 78 ◦N there are some discrepancies between sea-ice re-

constructions based on dinocysts/foraminifers/ostracods and IP25: some sites have both seasonal and perennial interpretations

based on the same core, but different indicators. Because of the conflicting interpretations it is not possible for any one model

to match every data point in our data synthesis, or say whether the Arctic was seasonally ice-free. Drivers for the inter-model

differences are: different phasing of the up and down short-wave anomalies over the Arctic ocean, associated with differences15

in model albedo; possible cloud property differences, in terms of optical depth; LIG ocean circulation changes which occur for

some, but not all, LIG simulations. Finally we note that inter-comparisons between the LIG simulations, and simulations with

moderate CO2 increase (during the transition to high CO2 levels), may yield insight into likely 21C Arctic sea ice changes

using these LIG simulations.
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1 Introduction

The Last Interglacial (LIG) was the last time global temperature was substantially higher than the preindustrial, in particular

at high northern latitudes. It is important in helping us understand warm climates sea ice and climate dynamics (Otto-Bliesner

et al., 2013; Capron et al., 2017; Otto-Bliesner et al., 2017; Fischer et al., 2018). Stronger LIG spring and summertime insolation

contributed to this warmth, as well as feedbacks amplifying the initial insolation signal, in particular feedbacks related to the25

marine and land cryosphere. Previous climate model simulations of the LIG, forced by appropriate greenhouse gas (GHG)

and orbital changes, have failed to capture the observed high temperatures at higher latitudes (Malmierca-Vallet et al., 2018;

Masson-Delmotte et al., 2011; Otto-Bliesner et al., 2013; Lunt et al., 2013). Models used during the previous Coupled Model

Intercomparison Project 5 (CMIP5) disagree on the magnitude of Arctic sea ice retreat during the LIG: the diversity of sea

ice behaviour across models was linked to the spread in simulated surface temperatures and in the magnitude of the polar30

amplification (Otto-Bliesner et al., 2013; Lunt et al., 2013; IPCC, 2013). However it was difficult to compare some of the LIG

simulations because they were not all run using identical protocol. These studies thus highlighted the need of a systematic

approach to study the role of Arctic sea ice changes during the LIG.

Coupled Model Intercomparison Projects (CMIPs) coordinate and design climate model protocols for the past, present and

future climates, and have become an indispensable tool to facilitate our understanding of climate change (IPCC, 2007, 2013;35

Eyring et al., 2016). The Paleoclimate Model Intercomparison Project 4 (PMIP4) is one of the individual Model Intercompari-

son Projects which is taking part in CMIP6 (Kageyama et al., 2018). Within this framework, a common experimental protocol

for Last Interglacial (LIG) climate simulation was developed by Otto-Bliesner et al. (2017). CMIP models differ among each

other in their physical formulation, numerical discretization and code implementation. However this CMIP6-PMIP4 LIG stan-

dard protocol facilitates model inter-comparison work.40

Alongside a previous lack of a common experimental protocol, our ability to evalutate CMIP models has previously been

hindered by difficulties in determining LIG sea ice extent from marine core evidence (e.g. Otto-Bliesner et al., 2013; Sime

et al., 2013; Malmierca-Vallet et al., 2018; Stein et al., 2017). Planktonic foraminifers representative of subpolar, seasonally

open waters lived in the central part of the Arctic Ocean. These foraminifers suggest that the LIG Arctic Ocean was free of

summer sea ice (Nørgaard-Pedersen et al., 2007; Adler et al., 2009). Microfauna found in LIG marine sediments recovered45

from boreholes on the Beaufort Sea Shelf seem to likewise support this idea; these indicate that more saline Atlantic water

was present on the Beaufort Shelf, suggesting a lack of perennial Arctic sea ice during some part of the LIG (Brigham-Grette

and Hopkins, 1995). Ostracodes from the Lomonosov and Mendeleyev Ridges and Morris Jesup Rise suggest minimum sea

ice cover during the peak of the LIG (Cronin et al., 2010). Together this set of observations suggests an ice-free (summer

sea ice free) Arctic during some part of the LIG. On the other hand, a reconstruction of LIG Arctic sea ice changes made50

by combining terrestrial and open-water phytoplankton biomarkers with the sea ice proxy IP25 (a carbon-25 highly-branched

isoprenoid lipid) suggest that while a significant reduction of LIG sea ice occurred across the Barents Sea continental margin,

the central part of the LIG Arctic Ocean remained ice covered during summer (Stein et al., 2017). Stein et al. (2017) thus may

support the presence of sea ice in the Central Arctic throughout the LIG. However, for conditions of perennial sea ice or close
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to perennial sea ice, the association of low (or null) amounts of IP25 and phytoplankton markers is considered somewhat less55

robust compared with the other IP25 evidence (Belt, 2018). Interestingly though, despite the tendency for the marine evidence

side to suggest low, or possibly even ice-free, conditions in LIG summer in the high Arctic, no previous coupled climate models

have simulated an ice-free Arctic during the LIG (Otto-Bliesner et al., 2006; Lunt et al., 2013; Otto-Bliesner et al., 2013; Stein

et al., 2017).

Here we address the question of LIG Arctic sea ice by providing a new marine core synthesis. Additionally, the CMIP6-60

PMIP4 LIG experimental protocol developed by Otto-Bliesner et al. (2017) provides the systematic framework to enable us

examine the question of the simulation of LIG Arctic sea ice using a multi-model approach. This is important given the current

level of interest in the ability of climate models to accurately represent key Arctic climate processes during warm periods,

including sea ice formation and melting. We compare the LIG Arctic sea ice simulated by each model against our new data

synthesis, and investigate why different models show different Arctic sea ice behaviour.65

2 Materials and methods

2.1 Current Arctic sea ice

Our main objective is to investigate LIG sea-ice. However, a quick assessment of the sea ice simulated in the reference state,

i.e. the piControl experiment (PI) was necessary. In the absence of extensive sea ice data for the PI period, we used data for a

recent period before the current sea ice cover significant decrease. We used the NOAA Optimum Interpolation version 2 data70

(Reynolds et al., 2002) for the period 1982 to 2001. The sea-ice data in this data set is obtained from different satellite and

in-situ observations. We have used the monthly time series, at a resolution of 1◦ . This data set is termed ’NOAA_OI_v2’ in

the rest of this document.

2.2 Marine records of LIG Arctic sea ice

We focus here on records of sea ice from marine cores. Table 1 provides a summary of LIG sea ice information and data75

obtained from marine sediment cores collected in the Arctic Ocean, Nordic Seas and northern North Atlantic. South of 78◦N,

the records show ice-free conditions. Most of these sea ice records are derived from quantitative estimates of sea-surface

parameters based on dinoflagellate cysts (dinocysts). North of 78◦N the sea-ice related records are rare and different types of

indicators were used. In addition to dinocysts, the records are based on biomarkers linked to phototrophic productivity in sea

ice and on foraminifers and ostracods that both provide indication on water properties and indirectly on sea ice (de Vernal et al.,80

2013b). Between 78 and 87◦N , the faunal data have been interpreted as indicating densely seasonal sea-ice cover conditions

during the LIG.
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Table 1: Marine core records of Arctic sea ice from MIS5e. The references indicated for the dinocyst reconstructions are those

for the initial core, the reconstruction itself follows de Vernal et al. (2013a, b, 2019) (c.f. main text for details).

Latitude

(◦N )

Longitude

(◦E )

Sea-ice

indicator

Core name Reference Sea ice cover

months

Annual mean

SIC

Min Max Min Max

87.08 144.77 Ostracode

faunas

Oden96/12-1pc Cronin et al.

(2010)

3 11 0.15 0.95

85.32 -14 IP25 PS2200-5 Stein et al. (2017) 9 12 0.15 0.95

85.32 -14 Ostracode

faunas

PS2200-5 Cronin et al.

(2010)

3 11 0.15 0.95

85.14 -171.43 IP25 PS51/38-3 Stein et al. (2017) 9 12 0.15 0.95

84.81 -74.26 Subpolar

foraminifers

GreenICE (core

11)

Nørgaard-

Pedersen et al.

(2007)

3 11 0.15 0.95

81.92 13.83 IP25 PS92/039-2 Kremer et al.

(2018b)

3 12 0.3 0.95

81.54 30.17 Dinocysts PS2138 Matthiessen et al.

(2001)

1 6 0.15 0.5

81.54 30.59 IP25 PS2138-2 Stein et al. (2017) 6 12 0.15 0.95

81.19 140.04 IP25 PS2757-8 Stein et al. (2017) 9 12 0.15 0.95

79.59 -172.50 Subpolar

foraminifers

HLY0503-8JPC Adler et al. (2009) 3 11 0.15 0.95

79.32 -178.07 Ostracode

faunas

NP26-32 Cronin et al.

(2010)

3 11 0.15 0.95

79.20 4.67 IP25 PS93/006-1 Kremer et al.

(2018a)

3 9 0.3 0.6

78.98 -178.15 Ostracode

faunas

NP26-5 Cronin et al.

(2010)

3 11 0.15 0.95

76.85 8.36 Dinocysts M23455-3 Van Nieuwenhove

et al. (2011)

0 1 0 0.15

70.01 -12.43 Dinocysts M23352 Bauch and

Andruleit (2013)

0 1 0 0.15

69.49 -17.12 Dinocysts PS1247 N. Van

Nieuwenhove

0 2 0 0.2
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67.77 5.92 Dinocysts M23323 ??? 0 1 0 0.15

67.09 2.91 Dinocysts M23071 Van Nieuwenhove

et al. (2008); Van

Nieuwenhove and

Bauch (2008)

0 1 0 0.15

60.58 -22.07 Dinocysts MD95-2014 Eynaud (1999) 0 0 0 0

58.77 -25.95 Dinocysts MD95-2015 Eynaud et al.

(2004)

0 0 0 0

58.21 -48.37 Dinocysts HU90-013-13P Hillaire-Marcel

et al. (2001);

de Vernal and

Hillaire-Marcel

(2008)

0 1 0 0.15

55.47 -14.67 Dinocysts MD95-2004 Van Nieuwenhove

et al. (2011)

0 0 0 0

53.33 -45.26 Dinocysts HU91-045-91 A. de Vernal 0 1 0 0.15

53.06 -33.53 Dinocysts IODP1304 A. de Vernal and

B. Fréchette

0 1 0 0.15

50.17 -45.63 Dinocysts IODP1302/1303 A. de Vernal and

B. Fréchette

0 1 0 0.15

46.83 -9.52 Dinocysts MD03-2692 Penaud et al.

(2008)

0 0 0 0.15

37.80 -10.17 Dinocysts MD95-2042 Eynaud et al.

(2000)

0 0 0 0

Among sea-ice cover indicators, dinocyst assemblages have been used as quantitative proxy based on the application of the

modern analogue technique applied to a standardized reference modern data base developed from surface sediment samples

collected at middle to high latitudes of the Northern Hemisphere of the Northern Hemisphere (de Vernal et al., 2005; de Vernal85

et al., 2005b, 2013b, 2019). The sea-ice estimates from dinocysts used here are from different studies (see references in Table

1) and the new database including 71 taxa and 1968 stations (de Vernal et al., 2019). The reference sea ice data used for

calibration are the monthly 1955-2012 average of the National Snow and Ice Data Center NSIDC: (Walsh et al., 2016). The

results are expressed in term of annual mean of sea-ice cover concentration or as the number of months with >50% of sea-ice.

The error of prediction for sea-ice concentration is ±12%.90

Records of sea ice changes obtained by combining terrestrial and open-water phytoplankton biomarkers with the sea ice

proxy IP25 (a carbon-25 highly-branched isoprenoid lipid), or PIP25, suggest that while a significant reduction of LIG sea ice
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occurred across the Barents Sea continental margin, perennial sea ice cover may have existed. Stein et al. (2017) emphasis that

PIP25 has to be interpreted very cautiously if biomarker concentration are very low (see also Belt (2018)). The productivity

of algal material (ice and open water) must have been quite low that (almost) nothing reached the seafloor or is preserved in95

the sediments, and there must have been periods during the LIG when some open-water conditions occurred, since subpolar

foraminifers and coccoliths were found in core PS51/038 and PS2200 (Stein et al., 2017). It is however unclear whether these

periods equate to more than a month per year of open water (or seasonal ice conditions). This explains why some sites show

both seasonal and perennial interpretations at the same site. The reader is referred to the original publications (Table 1) for

more information on these data.100

Alongside the different types of sea ice indicators, another possible reason for the discrepancy between the dinocysts/-

foraminifers/ostracods and the PIP25 core data interpretations may lie in the definition of ‘perennial sea ice cover’. This is

because perennial does not automatically mean 100% sea ice cover, or a sea ice concentration (SIC) of 1.0. It means rather that

there is some sea ice, but not necessarily 100%, over the core site throughout the year (i.e. the summer season is not totally

ice-free). With this in mind, we take the most cautious common approach to quantifying LIG sea ice presence. On a monthly105

basis, we use a standard SIC 0.15 threshold for ice-covered, this means that the minimum annual mean SIC for perennial sea

ice is 0.15 for records which have been interpreted as covered by perennial sea ice. Due to the presence of sea ice leads, or gaps

in the ice, we assume a maximum SIC of 0.95. Using this approach, it is not possible to reliably distinguish between seasonally

and perennially covered areas using SIC annual mean. For this reason, it is more reliable to compare the number of months

that a core site is covered, rather than using SIC annual mean data. For completeness, we do however provide both sets of data:110

minimum and maximum numbers of months of sea ice cover, and annual mean SIC numbers in Table 1.

A third factor is the spatial (area) definition of ‘ice-free’. The Arctic is considered ice-free when, on any given day, the total

area of sea ice is less than 1 million km2. This means that some marine core sites could remain ice covered for the summer, but

the Arctic would nevertheless remain technically ice-free.

Other new QUIGS (Quaternary Interglacials) PAGES-PMIP working group syntheses aredescribed in Otto-Bliesner et al.,115

(in prep, companion paper to the present work), which updates LIG temperature and other LIG data synthesis.

2.3 CMIP6-PMIP4 Models

The last Coupled Model Intercomparison Project Phase 5 (CMIP5) collected climate simulations performed with 60 different

numerical models by 26 research institutes around the world (IPCC, 2013). The follow-on CMIP6 archive, to be completed

in 2020, is expected to gather model outputs from over 30 research institutes. Of these, currently twelve models have run the120

CMIP6-PMIP4 LIG simulation (Table 2). We present results here from all twelve of these models.

Table 2 provides an overview of the models used in this study. They are state-of-the-art coupled general circulation models

(GCM) and Earth System Models (ESM) simulating the atmosphere, ocean, sea ice and land surface processes dynamics with a

varying degree of complexity across them. These models have been developed for several years by individual institutes across

the world and, in the context of CMIP6, are used in the same configuration to simulate seamlessly past, present and future125

climate.
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Table 2 shows for each model: model denomination, physical core components, horizontal and vertical grid specifications,

details on prescribed vs interactive boundary conditions, relative publication for an in-depth model description, and LIG simu-

lation length (spin-up and production runs).
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Table 2: Overview of models that have run the CMIP6-PMIP4 LIG simulation. For each model, denomination, physical core

components, horizontal and vertical grid specifications, details on prescribed vs interactive boundary conditions, reference

publication and LIG simulation length is shown.

Model
name

Physical core
components

Model grid
(i_lon X i_lat X z_lev)

Boundary
Conditions

Reference
publication

LIG simulation
length (yrs)

ACCESS-ESM1-5

Atmosphere:
UM

Land:
CABLE2.4

Ocean:
MOM5
Sea Ice:
CICE4.1

Atmosphere:
192x145 x L38

Ocean:
360x300 x L50

Vegetation:
prescribed
Aerosol:

prescribed
Ice-Sheet:
prescribed

Ziehn et al. (2017)
Spin-up: 400

Production: 200

AWIESM2

Atmosphere:
ECHAM6.3.04p1

Land:
JSBACH 3.20

Ocean:
FESOM 2
Sea Ice:

FESOM 2

Atmosphere:
192x96 x L47

Ocean:
unstructured grid

126858 nodes x L48

Vegetation: interactive
Aerosol: prescribed

Ice-Sheet: prescribed

Sidorenko et al.

(2015)

Spin-up: 1000
Production: 100

CESM2

Atmosphere:
CAM6
Land:
CLM5
Ocean:
POP2

Sea Ice:
CICE5.1

Atmosphere:
288x192 x L32

Ocean:
320x384 x L60

Vegetation:
prescribed
Aerosol:

Ice-Sheet:

Danabasoglu et al.

(2019)

Spin-up:
Production:

EC-Earth3

Atmosphere:
IFS-cy36r4

Land:
HTESSEL

Ocean:
NEMO3.6

Sea Ice:
LIM3

Atmosphere:
512×256 x L91

Ocean:
362×292 x L75

Vegetation:
prescribed
Aerosol:

prescribed
Ice-Sheet:
prescribed

Hazeleger et al.

(2012)

Spin-up:
300

Production:
200

HadGEM3-GC3.1-

LL

Atmosphere:
MetUM-GA7.1

Land:
JULES-GA7.1

Ocean:
NEMO-GO6.0

Sea Ice:
CICE-GSI8

Atmosphere:
192×144 x L85

Ocean:
360×330 x L75

Vegetation:
prescribed
Aerosol:

Prescribed
Ice-Sheet:
prescribed

Williams et al. (2018)

Spin-up:
350

Production:
200

INM-CM4-8

Atmosphere:
INM-AM4-8

Land:
INM-LND1

Ocean:
INM-OM5

Sea Ice:
INM-ICE1

Atmosphere:
180x120 x L21

Ocean:
360x318 x L40

Vegetation:
prescribed
Aerosol:

interactive
Ice-Sheet:
prescribed

Volodin et al. (2018)

Spin-up:
50

Production:
100
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IPSL-CM6A-LR

Atmosphere:
LMDZ6

Land:
ORCHIDEE

Ocean:
NEMO-OPA

Sea Ice:
NEMO-LIM3

Atmosphere:
144x143 x L79

Ocean:
362x332 x L75

Vegetation:
prescribed PFTs,

interactive phenology
Aerosol:

Prescribed PI values
Ice-Sheet: prescribed

Boucher et al. (2019)
Spin-up: 300

Production: 200

LOVECLIM1.2

Atmosphere:
Land:
Ocean:
Sea Ice:

Atmosphere:
64x32 x L3

Ocean:
120x65 x L20

Vegetation: interactive
Aerosol: -

Ice-Sheet: prescribed
Goosse et al. (2010)

Spin-up:
Production:

MIROC-ES2L

Atmosphere:
CCSR AGCM

Land:
MATSIRO6.0

+VISIT-e
Ocean:

COCO4.9
Sea Ice:

COCO4.9

Atmosphere:
128x64 x L40

Ocean:
360x256 x L63

Vegetation: prescribed
Aerosol: prescribed

Ice-Sheet: prescribed

Hajima et al. (2019)
Tatebe et al. (2018)

Spin-up: 1450
Production: 100

NESM3

Atmosphere: ECHAM6.3
Land: JS-BACH

Ocean:
NEMO3.4

Sea Ice: CICE4.1

Atmosphere:
192x96 x L47

Ocean:
384x362 x L46

Vegetation:
Aerosol:

Ice-Sheet:
Cao et al. (2018)

Spin-up:
Production: 100

NorESM1-F

Atmosphere:
CAM4
Land:
CLM4
Ocean:

MICOM
Sea Ice:
CICE4

Atmosphere:
144x96 x L26

Ocean:
360x384 x L53

Vegetation:
prescribed, as PI

Aerosol:
prescribed, as PI

Ice-Sheet:
prescribed, as PI

Guo et al. (2019)
Spin-up: 500

Production: 200

NorESM2-LM

Atmosphere:
CAM-OSLO

Land:
CLM

Ocean:
BLOM
Sea Ice:
CICE

Atmosphere:
144x96 x L32

Ocean:
360x384 x L53

Vegetation: as in PI
Aerosol: as in PI

Ice-Sheet: as in PI
Seland et al. (2019)

Spin-up: 300
Production: 200

130

2.4 PMIP4 LIG (lig127k) simulation protocol

Results shown here are from main Tier 1 LIG simulation, from the standard CMIP6-PMIP4 LIG experimental protocol (Otto-

Bliesner et al., 2017). The prescribed LIG (lig127k) protocol differs from the CMIP6 Pre-industrial (PI) simulation protocol in

astronomical parameters and the atmospheric trace GHG concentrations. LIG astronomical parameters are prescribed according

to orbital constants (Berger and Loutre, 1991), and atmospheric trace GHG concentrations are based on ice core measurements.135

See Table 3 for a summary from Otto-Bliesner et al. (2017). All other boundary conditions, including solar activity, ice sheets,

aerosol emissions and etc., are identical to PI protocol.
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LIG simulation were initialized either from a previous LIG run, or from the standard CMIP6 protocol preindustrial simula-

tions, using constant 1850 GHGs, ozone, solar, tropospheric aerosol, stratospheric volcanic aerosol and land use forcing.

Although PI and LIG spin-ups vary between the models, most model groups aimed to allowed the land and oceanic masses140

to attain approximate steady state i.e. to reach atmospheric equilibrium and to achieve an upper-oceanic equilibrium. LIG

production runs are all between 100-200 years long, which is generally within the appropriate length for Arctic sea ice analysis

(Guarino et al., 2019).

Table 3. Astronomical parameters and atmospheric trace gas concentrations used to force LIG and PI simulations.

Astronomical parameters LIG PI

Eccentricity 0.039378 0.016764

Obliquity 24.040◦ 23.459◦

Perihelion-180◦ 275.41◦ 100.33◦

Date of vernal equinox March 21 at noon March 21 at noon

Trace gases

CO2 275 ppm 284.3 ppm

CH4 685 ppb 808.2 ppb

N2O 255 ppb 273 ppb

3 Results: simulated Arctic sea ice

Since all LIG production runs are at least 100 years in length, all model results are averaged over at least 100 years. We145

refer to the multi-model mean throughout as the MMM. Sea ice areas (SIAs) are calculated using a standard approach, i.e. by

considering the area covered by sea ice whose fraction is larger than 0.15. The Arctic sea ice area is computed for latitudes

higher than 60◦N .

3.1 PI sea ice

For the present-day we have satellite and in-situ observations with which to evaluate the models. The use of present-day sea150

ice data implies that we might expect our PI sea ice MMM to be generally somewhat larger than the observed mean. Figure 2

shows the mean seasonal cycle of the Arctic sea-ice extent simulated for the PI and LIG alongside the observed Arctic sea-ice

extent.

The summer minimum monthly MMM area for the PI is 5.85± 1.24 mill. km2, compared to the observed 1981 to 2002 mean

of 5.51 mill km2. Interestingly this MMM PI area is a little larger than the 1981–2002 area. The majority of the simulations155

show a realistic representation of the geographical extent for the summer minimum (Figure 3), with eight out of twelve models

showing a slightly smaller area compared to the present-day observations, and four showing an overestimated area. LOVE-

CLIM and EC-Earth have clearly too much ice (Table 4). The other models generally exhibit realistic PI summer minimum
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ice conditions. The detail of the geographical distribution of sea ice for the models, the MMM and the NOAA_OI_v2 data

sets (Fig. 3) confirms the results in terms of Arctic sea-ice extent. The large overestimation for LOVECLIM (Barents-Kara160

Seas and Nordic Seas) and EC-Earth (Nordic Seas) is also apparent. MIROC-ES2L performs rather poorly for the PI, with

insufficient ice close to the continents. The other models are generally matching the 0.15 isoline from the NOAA_OI_v2 data

set in a realistic manner. The winter maximum monthly MMM areas show little difference between the present day and PI

simulated areas. The MMM PI area is 12.05± 2.23 mill km2, compared to the observed 1981 to 2002 mean of 12.31 mill km2.

For both the summer and winter, the simulations and observations mostly agree on the month that the minimum and maximum165

are attained: July-August for the minimum ; and Jan-Feb for the maximum for every model (except NESM3, which is March;

Table 4).

The comparison between the model results and NOAA_OI_v2 data sets as a function of latitude for PI (Figures 5a and 7) at

the sites for which there are sea ice reconstructions for the LIG shows that nine of twelve models match the observations south

of 70◦N. Between 70 and 78◦N, there tend to be a model-data mismatch: around seven model have issues with getting the170

months of sea ice correct in the Nordic Seas, near Greenland and the sea ice edge. North of this all the models get the months

of perennial PI sea ice correct.

3.2 LIG sea ice

The models show a summer minimum monthly MMM area for the LIG of 2.39 ± 1.29 mill. km2, and a winter monthly MMM

area of 11.99 ± 1.21 mill. km2. Thus there is a reduction in SIA in the MMM of 49% for the minimum summer month, but175

almost no change for the winter month MMM. Every model shows a reduction, often substantial, in summer sea ice between

the PI and LIG.

Three models, of the thirteen, show the LIG Arctic with (or near) seasonally ice-free conditions i.e. very close to the ice-free

threshold (of 1 mill. km2). Of these three, only two realistically capture the PI Arctic: CESM2 and HadGEM3. CESM2 has

1.27 mill. km2 during the LIG, whilst HadGEM3 is ice-free. There is a large amount of inter-model variability for the LIG180

during the summer (Figure 4 and Table 4).

For the winter only six of the twelve models show a (small) winter reduction in sea ice between the PI and LIG. All models

therefore show a larger sea-ice area amplitude for LIG than for PI, and the range of model results is larger for LIG than for PI.

The summer season, but also the seasons of sea ice growth and decay, are therefore key to understand the behaviour of LIG sea

ice and the inter-model differences, as will be confirmed in Section 4.185

3.3 LIG model-data comparison

We compare the model results to reconstructions in terms of three broad categories: perennial sea-ice cover, seasonal cover

and ice free sites. To compute those, we consider the number of months, in the mean seasonal cycle, for which the sea ice

fraction is larger than 0.15 and define perennial sea ice to have at least 9 months of coverage, ice free areas to have less than

3 month coverage, and seasonal sea ice cover otherwise. Because several of the marine cores have ambiguous interpretations,190

suggesting both perennial and seasonal sea ice at the same high Arctic sites, it is not possible to for any one model to match
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Table 4. Sea ice area (for sea ice fraction > 0.15) for the PI and LIG simulations. MMM stands for the multi-model mean, STD for the

multi-model standard deviation.

PI sea ice in 106 km2 LIG sea ice in 106 km2

Model or dataset minimum (month) maximum (month) minimum (month) maximum (month)

NOAA_OI_v2 5.51 (8) 12.31 (2) na na

ACCESS 5.07 (8) 11.31 (2) 2.01 (7) 10.77 (2)

AWIESM2 5.10 (8) 10.83 (2) 3.10 (7) 10.65 (2)

CESM2 5.13 (8) 12.55 (2) 1.27 (7) 12.63 (2)

EC-Earth 7.32 (7) 12.72 (2) 3.00 (7) 11.34 (2)

HadGEM3 5.27 (7) 11.45 (2) 0.02 (7) 10.62 (2)

INMCM4-8 7.60 (7) 13.06 (1) 5.65 (7) 12.77 (2)

IPSLCM6 5.83 (7) 12.80 (2) 2.36 (7) 12.73 (2)

LOVECLIM 8.30 (7) 12.77 (1) 2.89 (7) 12.89 (2)

MIROC-ES2L 4.10 (7) 11.72 (2) 2.61 (7) 11.79 (2)

NESM3 5.03 (8) 14.49 (3) 1.35 (7) 14.98 (3)

NORESM1-F 4.81 (8) 11.35 (2) 2.23 (7) 11.57 (2)

NORESM2-LM 5.10 (8) 10.88 (2) 2.18 (7) 11.26 (2)

MMM 5.85 (7) 12.15 (2) 2.39 (7) 11.99 (2)

STD 1.24 1.04 1.29 1.21

every data point in Table 1. That said, the comparison between the PI and LIG results and PI and LIG sea ice data as a function

of the latitude of the LIG data sites is remarkably similar for each individual model (Figure 5): the same models that struggle

with realistically representing the sea ice cover duration (at a core site) in the PI tend also to struggle with it for the LIG. The

main problem area in this core-site-by-core-site comparison remains the Nordic Seas, near to Greenland and the PI sea ice195

edge, between 70 and 78◦N. In the high Arctic, north of 78◦N the marine cores with dual interpretations means we cannot

unambiguously (from the Table 1 dataset) identify which models are accurately capturing the LIG sea ice conditions. In fact,

some models support the interpretation of perennial sea ice, while other support the one of some months during summer being

ice free.

Figure 6 shows the geographical model-data match. From this, we see that it is more difficult for the models to realistically200

capture sea ice change over the near Greenland core sites, close to the sea ice edge. If we cross compare the observation-model

match for each model for both the PI (Figure 7) and the LIG (Figure 6) then LOVECLIM and NESM3 have particular problem

accurately capturing sea ice at the core site locations near Svalbard, whilst NORESM1-F does the best job of capturing the

near Greenland, Nordic seas sea ice edge for both time periods. It is these Nordic Seas sea ice edge differences (over the Table

1 core sites) that make the difference between the simulation-data matches for each model.205
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Farther north, in the high Arctic, the simulation-data agreement is perfect for the PI (and likewise for the ice-free Atlantic

regions). But it is not possible, from Figure 6, to establish differences which occur for all models for the LIG. This is perhaps

inevitable given that some marine cores have interpretations which suggest both perennial and seasonal sea ice at the same

high Arctic sites. The marine core community may need to resolve this dinocyst/foraminifers/ostracod and the PIP25 core data

interpretation discrepancy before establishing a most likely sea ice change from this data.210

4 Discussion of model differences

Whilst we cannot yet definitely establish the most likely Arctic sea ice conditions during the LIG, we can investigate sea ice

differences across models when we have sufficient model data. To can do this analysis for the three models for which we have

sufficient data: CESM2, HadGEM3, and IPSLM6. These models each represent a distinct sea ice response to the LIG forcing,

i.e. summer sea ice concentration less than 0.15 everywhere (HadGEM3), significant summer sea ice retreat with concentration215

less than 0.8 in central Arctic (CESM2), modest summer sea ice retreat with a small area with sea ice concentration close to 1

in Central Arctic (IPSLCM6).

Sea ice formation and melting can be affected by a large number of factors inherent the atmosphere and the ocean dynamics,

alongside the representation of sea ice itself within the model (i.e. the type of sea ice scheme used). In coupled models it can

be extremely difficult to identify the causes of essentially coupled-model behaviour. Nevertheless, we discuss the short-wave220

(SW) surface energy balance, ocean circulation, and comment on cloudiness and albedo changes.

4.1 Atmospheric energy budget differences

The atmospheric energy budget LIG – PI anomaly (Fig. 8) is negative in winter and strongly positive in summer, following

the imposed insolation anomaly. These anomalies in total heat budget are dominated by the SW budget contribution from May

to August. We split the SW budget into the SWdown and SWup contributions. The SWup flux anomaly shown on Fig. 8 is225

counted positive downward, which means that the total SW budget (in black) is the sum of the SWdn contribution (in red) and

the SWup contribution (in blue). On this figure, a positive SWup anomaly means that the SWup is less intense at LIG than at

PI, hence contributing to an increase in the net SW flux.

For all the models, the total heat budget anomaly is due to (i) an increased downward SW flux in spring resulting from

the insolation forcing, and (ii) a decreased upward shortwave flux in summer, related to the decrease of the albedo due to the230

smaller sea-ice cover. During summer, this decrease in upward shortwave flux more than compensates the decrease in SWdn,

which is maximum in August.

The summer anomaly reaches 80 W/m2 in June for HadGEM3, 60 W/m2 for IPSLCM6, 50 W/m2 for CESM2. The differ-

ences between the model results are due to a different phasing of the SWdn and SWup anomalies for HadGEM3, compared to

the other two models: for HadGEM3, the two fluxes peak in June, while for CESM2 and IPSLCM6, the SWdn flux peaks in235

May and the SWup signal peaks in July, so that the anomaly in these fluxes partly compensate. HadGEM3 shows a larger net

SW increase despite a SWdn anomaly which is smaller than for the other two models. On the other hand, HadGEM3’s SWup
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component is stronger and always positive, which is different to the other two models which show a negative SWup contribu-

tion in April-May. These differences are associated with differences in albedo for the three models (Fig. 9). HadGEM3’s sea

ice and Arctic ocean albedos are always smaller than those simulated by IPSLCM6 and CESM2 and the difference is larger for240

LIG than for PI. The albedo simulated by HadGEM3 in May and June is particularly low compared to the two other models,

which explains why the SWup component peaks earlier. The albedo LIG–PI anomalies over the whole Arctic show that the

sea-ice albedo feedback is most effective in HadGEM3.

In terms of cloudiness, IPSLCM6 shows differences in the properties of clouds, in terms of optical depth, between PI and

LIG, but this could not be investigated, due to a lack of data (thus far), for the other models. Thus we cannot tell if LIG–245

PI anomalies in SWdn fluxes, i.e. differences between HadGEM3’s and CESM2 flux also have a contribution due to cloud

changes.

4.2 Ocean circulation differences

Changes in Arctic sea ice related to ocean heat transport have been found for the CESM large ensemble (Auclair and Tremblay,

2018). The differences can then be amplified by the sea-ice albedo feedbacks. We check this in our models by calculating long-250

term means of the maximum meridional stream function at 26◦N for the PI and LIG simulations. These are 19.5 and 18.7 for

CESM2, 15.6 and 15.8 Sv for HadGEM3, and 12.9 and 10.4 for IPSLCM6. Thus, the CESM2 and HadGEM3 models exhibit

an AMOC that is almost unchanged between PI and LIG, while in the IPSLCM6 model the AMOC weakens. This implies that

a reduced northward oceanic heat transport could prevent sea ice loss in the central Arctic in some but not all models (see also

Stein et al., 2017).255

Some differences in the response of sea ice to LIG forcing therefore appear to be due either to differences in atmospheric

response (HadGEM3 vs IPSL-CM6 and CESM2), similar to mechanisms found for current sea ice decline (e.g. He et al. (2019);

Olonscheck et al. (2019)) or to changes in ocean heat transport (CESM2 vs IPSLCM6). But while AMOC changes partially

explain the differences found between IPSL (more sea ice in central Arctic) and CESM2 and HadGEM3 (less sea ice in central

Arctic), they do not explain differences between ice-free and ice-covered conditions in HadGEM3 and CESM2. Other factors260

which remain to be investigated include clouds and ocean heat uptake in the Arctic in the different models, for example, as a

function of stratification.

4.3 Transient CO2 forced responses: LIG vs transient 1pctCO2

The LIG has higher insolation than PI at high northern latitudes during spring and summer, and less significant changes in

winter insolation. This is distinct from the increased GHG which is the dominant forcing for future climates. However, since265

sea ice minimum occurs in summer, it is of interest to consider possible relationships between CMIP6 model responses for

the LIG and those for the transient 1pctCO2 experiments. Seven models have the LIG, PI and 1pctCO2 simulations available.

These include models with large, small and intermediate responses in sea-ice for the LIG.

Figure 10 suggests that there is indeed such a relationship between the summer sea-ice concentration decreases for LIG

and the averages from years 50 to 70 of the transient 1pctCO2 simulations : the models which responds strongly at LIG also270

15

https://doi.org/10.5194/cp-2019-165
Preprint. Discussion started: 23 January 2020
c© Author(s) 2020. CC BY 4.0 License.



respond strongly for the 1pctCO2 forcing, and the model with the smallest response for LIG (INMCM4-8) has the smallest

response to the 1pctCO2 forcing. The relationship shown in Figure 10 does not last for later periods in the 1pctCO2 runs, when

the winter sea-ice is also affected by the increased greenhouse gas forcing. This implies inter-comparisons between the LIG

simulation, and simulations with moderate CO2 increase (during the transition to high CO2 levels), should be investigated.

5 Conclusions275

The Last Interglacial (LIG) was the last time global temperature was substantially higher than the preindustrial at high northern

latitudes (Otto-Bliesner et al., 2013; Capron et al., 2017; Otto-Bliesner et al., 2017; Fischer et al., 2018). To help understand the

role of Arctic sea ice in these changes, we present a new synthesis of LIG sea ice information using marine core data collected

in the Arctic Ocean, Nordic Seas and northern North Atlantic - and compare this to PMIP4-LIG simulations.

Our synthesis shows that south of 78◦N in the Atlantic and Nordic seas the LIG was definitely seasonally ice-free. These280

southern sea ice records are derived from quantitative estimates of sea-surface parameters based on dinoflagellate cysts (dinocysts).

North of 78◦N the sea-ice related records are more difficult to obtain and interpret. Some records here are based on biomarkers

linked to phototrophic productivity in sea ice and on foraminifers and ostracods that both provide indication on water properties

and indirectly on sea ice (de Vernal et al., 2013b). North of 78 ◦N, these faunal data have been interpreted as indicating densely

seasonal sea-ice cover conditions during the LIG. However north of 78 ◦N records obtained by combining terrestrial and open-285

water phytoplankton biomarkers with the sea ice proxy IP25 (a carbon-25 highly-branched isoprenoid lipid), or PIP25, suggest

that while a significant reduction of LIG sea ice occurred across the Barents Sea continental margin, perennial sea ice cover

may have existed (Stein et al., 2017). It is unclear whether these periods equate to more than a month per year of open water

(or seasonal ice-free conditions).

As a result of the discrepancy between the dinocysts/foraminifers/ostracods and the PIP25 core data interpretations, some290

sites in the synthesis have both seasonal and perennial interpretations based on the same core. Additionally, the definition of

‘perennial sea ice cover’ has previously been unclear. Perennial does not automatically mean a sea ice concentration of 1.0. To

address this here we quantify LIG sea ice presence on a monthly basis, using a standard SIC 0.15 threshold for ice-covered.

This means that the minimum annual mean SIC for perennial sea ice is 0.15 for records which have been interpreted as covered

by perennial sea ice (which also implies open water). Thus the definitions of ice free and seasonal in the literature need to be295

treated with care. It is also noted that, the Arctic is considered ice-free when, on any given day, the total area of sea ice is less

than 1 million km2. This means that some marine core sites could remain ice covered for the summer, but the Arctic would

nevertheless remain technically seasonally ice-free.

Model results from thirteen models show a multi model mean (MMM) summer SIA LIG of 2.39 ± 1.29 mill. km2, and a

winter monthly MMM area of 11.99 ± 1.21 mill. km2. This is a a reduction in SIA of 59% for the minimum summer month300

between the PI and LIG, but almost no change for the winter month MMM. Every model shows a reduction, often substantial,

in summer sea ice between the PI and LIG. For the winter only six of the thirteen models show a (small) winter reduction in

sea ice between the PI and LIG. This reinforces that the key season for understanding LIG warming is the summer.
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Because several of the marine cores have conflicting interpretations it is not possible for any one model to match every data

point in the data synthesis. In general, the same models that struggle with realistically representing the numbers of months of sea305

ice in the PI that struggle with the LIG. The main problem area for matching the core sites (with unambiguous interpretations)

remains the Nordic Seas, near to Greenland and the PI sea ice edge, between 70 and 78◦N. It is not possible, based on our

synthesis, to identify which models are accurately capturing the LIG sea ice conditions in the high Arctic.

Whilst we show that we cannot establish which models accurately capture LIG Arctic sea ice, we do investigate sea ice

differences across models. We find that the total heat LIG Arctic budget anomaly is due to (i) an increased downward SW flux310

in spring, due to the insolation forcing, and (ii) an decreased upward shortwave flux in summer, related to the decrease of the

albedo due to the smaller sea-ice cover. During summer, this decrease in upward shortwave flux more than compensates the

decrease in the SW down, which is maximum in August. Differences between the model results are due to a different phasing

of the up and down SW anomalies in the different models, and are associated to the differences in model albedo.

Analysis of IPSLCM6, shows differences in the properties of clouds, in terms of optical depth, between PI and LIG. Further315

work is required to identify if this is also important for other models. Changes in Arctic sea ice may also be related to ocean

heat transport. Here, we have shown that ocean circulation changes occur for some, but not all, LIG simulations. Other factors

which remain to be investigated include clouds and ocean heat uptake in the Arctic in the different model.

Finally we note that there is an apparent relationship between the summer sea-ice areas simulated for the LIG and the ones

averaged over years 50 to 70 of the transient 1pctCO2 simulations: the models which responds strongly to the LIG forcing also320

respond strongly for the 1pctCO2 forcing. This implies inter-comparisons between the LIG simulation, and simulations with

moderate CO2 increase (during the transition to high CO2 levels), may yield insight into likely 21C Arctic sea ice changes

from LIG simulations, especially if we achieve a less ambiguous characterisation of LIG sea ice from marine cores.
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Figure 1. Map showing the location of LIG Arctic cores in Table 1. The map background has been created using http://visibleearth.nasa.gov.
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Figure 2. Mean seasonal cycle of the Arctic sea-ice extent simulated for the PI (top) and LIG (middle) simulations, and Arctic sea-ice extent

LIG – PI anomaly (bottom), in 106km2. The area shown is that for sea-ice concentrations larger than 0.15. The grey shading shows the

monthly minimum/maximum observed sea-ice concentration above 0.15 over the years 1982–2001, as given by the NOAA_OI_v2 data set.
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Figure 3. PI sea-ice concentration for the month of minimum extent as computed for Figure 2. The magenta contour shows the 0.15 isocontour

of the observations averaged over years 1982–2001. 21
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Figure 4. LIG sea-ice concentration for the month of minimum extent as computed for Figure 2. The magenta contour shows the 0.15

isocontour of the corresponding PI simulation. 22
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Figure 5. Model-data comparison as a function of latitude for PI and LIG. The model results are shown in terms of number of months

of sea-ice fraction > 0.15 in an average year at each data site. For the PI, the values of the NOAA_OI_v2 data sets at the data sites are

shown as black squares, with error bars indicating interannual variability over years 1982–2001. For the LIG, the reconstructed minimum

and maximum number of months of sea-ice coverage are given as vertical lines.
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Figure 6. Number of months for which the sea-ice fraction is larger than 0.15, for the multi-model mean (MMM) and for each model, for

the LIG. The color filling of the symbols on the maps correspond to the reconstructed values, classified into 3 categories: perennial cover

(9 to 12 months), seasonal cover (3 to 9 months), ice free state (0 to 3 months). On the MMM panel, for each data site, the color of the

symbol outline corresponds to the number of models simulating the reconstructed ice cover. On the panels for individual models, the shape

of the symbol depends on the model result being below the reconstructed one (triangle down), above the reconstructed one (triangle up) or

in the same category as the reconstructed one (circle). The number of data points which are above, equal and below the number of months

simulated by models are written in the bottom right corner of each panel.24
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Figure 7. Same as LIG figure for PI, using NOAA_OI_v2 data sets.
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Figure 8. Main components of the atmospheric energy budget averaged over the Arctic for HadGEM3, CESM2 and IPSLCM6. The LIG–PI

anomalies as shown as a function of the month for the total energy budget , counted positive downwards (black), the SW budget (violet), and

for the downward (red) and upward SW (blue) fluxes, all counted positive downward.
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Figure 9. Albedo over the Arctic for PI (top), LIG (middle) and LIG–PI (bottom) for HadGEM3, IPSL-CM6 and CESM2. The albedo has

been recomputed from the SWup and SWdn fluxes. The l.h.s. column shows the resuls for the whole Arctic, while the r.h.s. column shows

the results for areas where the sea ice fraction is larger than 0.9.
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Figure 10. LIG vs 1pctCO2 July-August-September sea ice areas (for sea ice concentrations larger than 0.15). The results for the 1pctCO2

simulations have been averaged for years 50 to 70.
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